Skip to main content
Log in

Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Where wetlands receive urban runoff, Typha spp. and other invasive plants often displace the native vegetation. We tested the ability of nutrients (N and P) to increase vegetative growth of T. × glauca (a hybrid of T. latifolia and T. angustifolia). In the greenhouse, 17 treatments revealed that T. × glauca required both N and P for growth, and total leaf length was most stimulated where a higher proportion of P was added (7N∶1P vs. 14N∶1P, with N constant and P changed), regardless of concentration (the High treatment was 4× the Low treatment). In Gardner Marsh (Madison, Wisconsin, USA), we set up 28 plots (1×6 m) that bisected the boundary between sedge meadow (graminoids) and T. × glauca, and we added a common lawn fertilizer (9N∶1P∶4K) at high (62.5 g/m2), medium (31.3 g/m2), low (15.6 g/m2), and control (0 g/m2) rates on five dates, with n=7 plots/treatment. After one growing season, fertilizer addition increased T. × glauca ramet density, height, and biomass, especially where the sedge meadow graminoids were initially dominant. Aboveground biomass of T. × glauca in the high nutrient addition treatment (1029±256.1 g/m2) was more than double that for control plots (431±80.52 g/m2) overall, with the greatest percent increase in sedge meadow subplots. In contrast, native graminoids (mostly Carex spp.) did not respond to treatment, either in biomass or percent cover. Typha × glauca allocated nutrients to both growth and storage, as indicated by higher N and P concentrations in leaves, shoot bases, and rhizomes in plots with high nutrient addition. Because fertilizing the marsh enhanced the shoot growth of T. × glauca but not native graminoids, and because the 7N∶1P treatment stimulated growth in the greenhouse, we suggest that wetland managers focus on reducing P inflows to urban wetlands. Fertilizer additions below those recommended by the manufacturer for new lawns (5× that of our highest treatment) should be more economical and have fewer impacts on receiving wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aerts, R. and F. Berendse. 1988. The effect of increased nutrient availability on vegetation dynamics in wet healthlands. Vegetatio 76:63–69.

    Google Scholar 

  • Aerts, L., M. A. Baker, P. J. Ewanchuk, and M. D. Bertness. 2000. Clonal integration and the expansion of Phragmites australis. Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Auclair, A. N. D., A. Bouchard, and J. Pajaczkowski. 1976. Productivity relations in a Carex-dominated ecosystem. Oecologia (Berlin) 26:9–31.

    Article  Google Scholar 

  • Bastian, R. K. (ed.). 1993. Constructed wetlands for wastewater treatment and wildlife habitat. U.S. Environmental Protection Agency, Washington, DC, USA. EPA832-R-93-005.

    Google Scholar 

  • Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169.

    Article  Google Scholar 

  • Bernard, J. M. and F. A. Bernard. 1973. Winter biomass in Typha glauca Godr. and Sparganium eurycarpum Engelm. Bulletin of the Torrey Botanical Club 100:125–131.

    Article  Google Scholar 

  • Bernard, J. M. and M. L. Fitz. 1979. Seasonal changes in above-ground primary production and nutrient contents in a central New York Typha glauca ecosystem. Bulletin of the Torrey Botanical Club 106:37–40.

    Article  Google Scholar 

  • Bernard, J. M. and B. A. Solsky. 1977. Nutrient cycling in a Carex lacustris wetland. Canadian Journal of Botany 55:630–638.

    Article  CAS  Google Scholar 

  • Bowden, W. B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348.

    Article  CAS  Google Scholar 

  • Boyd, C. E. and L. W. Hess. 1970. Factors influencing shoot production and mineral nutrient levels in Typha latifolia. Ecology 51: 296–300.

    Article  CAS  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1998. Effects of nitrogen additions the vertical structure of a constructed cordgrass marsh. Ecological Applications 8:692–705.

    Article  Google Scholar 

  • Boyer, M. L. H. and B. D. Wheeler. 1989. Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. Journal of Ecology 77:597–609.

    Article  CAS  Google Scholar 

  • Brown, S. C. and B. L. Bedford. 1997. Restoration of wetland vegetation with transplanted wetland soil: an experimental study. Wetlands 17:424–437.

    Article  Google Scholar 

  • Burke, M. J. W. and J. P. Grime. 1996. An experimental study of plant community invasibility. Ecology 77:776–790.

    Article  Google Scholar 

  • Chapin, F. S. III, E. Schulze, and H. A. Mooney. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423–447.

    Article  Google Scholar 

  • Craft, C. B., J. Vymazal, and C. J. Richardson. 1995. Response of Everglades plant communities to nitrogen and phosphorus additions. Wetlands 15:258–271.

    Google Scholar 

  • Davis, S. M. 1991. Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquatic Botany 40:203–224.

    Article  Google Scholar 

  • de Kroon, H. and J. van Groenendael (eds.) 1997. The Ecology and Evolution of Clonal Plants. Backhuys Publishers. Leiden, The Netherlands.

    Google Scholar 

  • Ellstrand, N. C. and K. A. Schierenbeck. 2000. Hybridization as stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences 97:7043–7050.

    Article  CAS  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755.

    Article  Google Scholar 

  • Garver, E. G., D. R. Dubbe, and D. C. Pratt. 1988. Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquatic Botany 32:115–127.

    Article  Google Scholar 

  • Gerloff, G. C. and P. H. Krombholz. 1966. Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnology and Oceanography 11:529–537.

    Article  Google Scholar 

  • Gorham, E. and M. G. Somers. 1973. Seasonal changes in the standing crop of two montane sedges. Canadian Journal of Botany 51:1097–1108.

    Article  Google Scholar 

  • Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley and Sons, New York, NY, USA.

    Google Scholar 

  • Hayati, A. A. and M. C. F. Proctor. 1991. Limiting nutrients in acid-mire vegetation: peat and plant analyses and experiments on plant responses to added nutrients. Journal of Ecology 79:75–95.

    Article  Google Scholar 

  • Hotchkiss, N. and H. L. Dozier. 1949. Taxonomy and distribution of North American cattails. The American Midland Naturalist 41: 237–254.

    Article  Google Scholar 

  • Huenneke, L. F., S. P. Hamburg, R. Koide, H. A. Mooney, and P. M. Vitousek. 1990. Effects of soil resources on plant invasion and community structure in California serpentine grassland. Ecology 71:478–491.

    Article  Google Scholar 

  • Hutchings, M. J. and D. K. Wijesinghe. 1997. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology and Evolution 12:390–394.

    Article  Google Scholar 

  • Irwin, H. A. 1973. A natural history study of East Marsh of the University of Wisconsin Arboretum. M.S. Thesis, University of Wisconsin. Madison, WI, USA.

    Google Scholar 

  • Jervis, R. A. 1969. Primary production in the freshwater marsh ecosystem of Troy Meadows, New Jersey. Bulletin of the Torrey Botanical Club 96:209–231.

    Article  Google Scholar 

  • Klimes, L., J. Klimesova, R. J. J. Hendriks and J. M. Van Groenendael. 1997. Clonal plants architecture: a comparative analysis of form and function. p. 1–29. In H. de Kron and J. Van Groenendael (eds.). The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Koerselman, W. and A. R. M. Meuleman. 1996. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441–1450.

    Article  Google Scholar 

  • Lee, G. F. 1971. Studies of nutrient sources for Lake Wingra: Lake Wingra Annual Report 1970–1971. Eastern Deciduous Forest Biome. University of Wisconsin, Madison, WI, USA. Memo Report #71-44.

    Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. Bazzaz. 2000. Biotic invasions: causes, epidemiology, global consequences and control. Ecological Application 10:689–710.

    Article  Google Scholar 

  • Marsh, L. C. 1951. Studies in the genus Typha. Ph.D. Dissertation. Syracuse University Syracuse, NY, USA.

    Google Scholar 

  • McDonald, M. E. 1955. Cause and effects of a die-off of emergent vegetation. Journal of Wildlife Management 19:24–35.

    Article  Google Scholar 

  • Miao, S. L. and F. H. Sklar. 1998. Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetlands Ecology and Management 5:245–263.

    Article  Google Scholar 

  • Montague, T. G. and T. J. Givnish. 1996. Distribution of black spruce vs. eastern larch along peatland gradients: relationship to relative stature, growth rate, and shade tolerance, and the significance of larch’s deciduous habit. Canadian Journal of Botany 74: 1514–1532.

    Article  Google Scholar 

  • Mooney, H. A., S. P. Hamburg, and J. A. Drake. 1986. The invasions of plants and animals into California. In H. A. Mooney and J. A. Drake (eds.) Ecology of Biological Invasions of North America and Hawaii. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Neill, C. 1990. Effects of nutrients and water levels on emergent macrophyte biomass in a prairie marsh. Canadian Journal of Botany 68:1007–1014.

    CAS  Google Scholar 

  • Newman, S., J. Schuette, J. B. Grace, K. Rutchey, T. Fontaine, K. R. Reddy, and M. Peitrucha. 1998. Factors influencing cattail abundance in the northern Everglades. Aquatic Botany 60:265–280.

    Article  Google Scholar 

  • Prentki, R. T., D. S. Rogers, V. J. Watson, P. R. Weiler, and O. L. Loucks. 1977. Summary tables Lake Wingra basin data. Center for Biotic Systems, Institute for Environmental Studies. University of Wisconsin, Madison, WI, USA.

    Google Scholar 

  • Richardson, C. J. and P. E. Marshall. 1986. Processes controlling movement, storage and export of phosphorus in a fen peatland. Ecological Monographs 56:279–302.

    Article  Google Scholar 

  • Runhaar, J., C. R. van Gool, and C. L. G. Groen. 1996. Impact of hydrological changes on nature conservation areas in The Netherlands. Biological Conservation 76:269–276.

    Article  Google Scholar 

  • SAS Institute. 1996. SAS system for mixed models. SAS Institute. Cary, NC, USA.

    Google Scholar 

  • Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). The American Midland Naturalist 78: 257–287.

    Article  Google Scholar 

  • Tilman, D. and D. Wedin. 1991. Dynamics of nitrogen competition between successional grasses. Ecology 72:1038–1049.

    Article  Google Scholar 

  • Urban, N. H., S. M. Davis, and N. G. Aumen. 1993. Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquatic Botany 46:203–223.

    Article  CAS  Google Scholar 

  • Valiela, I. and J. M. Teal. 1979. The nitrogen budget of a salt marsh system. Nature 280:652–656.

    Article  CAS  Google Scholar 

  • Waters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70:349–351.

    Article  Google Scholar 

  • Weisner, S. E. B. 1993. Long-term competitive displacement of Typha latifolia by Typha angustifolia in a eutrophic lake. Oecologia 94:451–456.

    Article  Google Scholar 

  • Wilcox, D. A. 1986. The effects of deicing salts on vegetation in Pinhook Bog, Indiana. Canadian Journal of Botany 64:865–874.

    Article  CAS  Google Scholar 

  • Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog wetland complex, Indiana Dunes National Lakeshore. Wetlands 4:115–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, I., Zedler, J.B. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca . Wetlands 22, 509–521 (2002). https://doi.org/10.1672/0277-5212(2002)022[0509:CNASAS]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2002)022[0509:CNASAS]2.0.CO;2

Key Words

Navigation